
The No Longer Foreign
Function Interface

Jeff Vaughan
November 5, 2004

Contents

• Motivation
• Array Dimension Types
• Objects and Pointers
• Structs and Function Pointers

Practical languages need
foreign function support.

• Multilanguage development.
• Support for legacy code.
• Interaction with the operating system.

The NLFFI is…

• an embedding of C types in SML types.
• an SML library for manipulating C data

in SML.
• a data conversion library.
• a stub code generator.

SML/NJ data is not directly
compatible with C libraries.

• SML/NJ’s garbage collector uses least
significant bits to distinguish references
from unboxed data.

• Normal SML integers are 31 bits.
• 32 bit integers are a boxed type.
• In C, an int is a 32 bit word.
• None of these types are the same.

FFI’s carry interesting
semantic issues.

• There are bigger problems then representing
primitives.

• What is the ML analog to …
– struct?
– enum?
– union?
– void*?

• As good type-conscious programmers, we
don’t want to think about void *, but as lazy
library users, we need to.

OCaml pushes complexity
into the C layer.

• To make a C call (easy):
– Import the function:
external foo: int -> char = "foo"

– Call it: let s = foo 3
• Things aren’t really this easy.
• The C function must take type value.
• Such values are manipulated with C macros.
• Therefore, you can only call into stub code

expecting OCaml values.

MLton provides a simple FFI.

• To make a C call (also easy):
– Import the function:
import foo: int -> char = "foo"

– Call it: val s = foo 3
• MLton’s primitives match the C runtime and

can interface directly with library code.
• Structs, enums, etc… are still problematic.

– Code stubs in C can convert between primitives
and structured data.

– MLton allows for nasty pointer hacks too.

The old SML/NJ FFI was
better, but still quite limited.

• Some support for structs, pointers, functions.
• On a C function call the FFI converted SML

values to corresponding C values.
• New values are copied into and out of the C

heap when crossing the SML/C boundary.
• Cyclic C types not permitted.
• Only word length parameters are permitted.

The NLFFI seeks to do more
by doing less.

• All conversions explicit (though the
NLFFI will automatically add some).

• SML programs can manipulate
unconverted C values directly.

NLFFI supports an encoding
of fixed length array types.

• How can we express int[3] ?
• We build a new array type with two

parameters (δ, τ) array.
– Parameter τ represents the element type.
– Parameter δ is the array dimension.

• For now, we’ll just make sure array of
different lengths have different δs.

Encoding lengths requires
types representing ints.

• Encoding binary numbers is easy:
type bin type α dg1

type α dg0 type α dim

• We can represent 4 as
bin dg1 dg0 dg0 dim

Array length representations
need to sensible.

• The array dimension
(int * bool) dim has no meaning.

• Providing a limited set of constructors stops
values from inhabiting such types.

sig ...
 val bin: bin dim

 val dg0 : α dim -> α dg0 dim
 val dg1 : α dim -> α dg1 dim
end

Array length representations
need to be unique.

• Binary numbers are only unique if
leading zeros are forbidden.

• Adding an extra type parameter to dim
enforces this.

• (next slide)

Array length representations
need to be unique. (II)

Signature BinSig = sig
 type zero and nonzero

 type bin and α dg0 and α dg1
 type (α, ζ) dim
 val bin: (bin, zero) dim

 val dg0: (α, nonzero) dim ->
(α dg0, nonzero) dim

 val dg1: (α, ζ) dim ->
(α dg1, nonzero) dim

end

We need values to inhabit the
dimension type.

• To construct arrays, we need to provide
values of type bin … dim.

• Features of these values:
– Can only be built using appropriate constructors

(requires opaque signature).
– Can be constructed without excessive typing

(compare to a unary encoding).
– Values can implement at toInt function.
– The NLFFI implementation uses decimal, which

analogous, but requires more constructors.

We need values to inhabit the
dimension type. (II)

structure Dim :> DimSig = struct

 type zero = unit

 type nonzero = unit

 type bin = unit

 type α dg0 = unit
 type α dg1 = unit
 type (α, ζ) dim = int

 val bin = 0

 fun dg0 d = 2 * d

 fun dg1 d = 2 * d + 1

 fun toInt d = d

end

We have enough machinery
to type an array constructor.

• The signature holds only one type and
the constructor.
open Dim
sig
 type (τ , δ) darray
 val create:(δ, ζ)dim->τ->(τ, δ)darray
end

• We can build an array of four ints with
val four = dg0 (dg0 (dg1 bin))
val a = create four 0

C programs classify data as
pointers and objects.

• C code refers to data in two ways.
– L-values or objects represent actual bits.
– Pointers are the addresses of l-values.

• In C we explicitly convert between
between objects and pointers using *
and &.

C converts between objects
and references automatically.

• For example:
 int x = 3; /* store into &x */

 printf(…, x); /* read from x */

• ML variables don’t have this dual
property. We’ll need to explicitly
convert.

The NLFFI distinguishes
pointers from objects.

• Pointer and object types are
 type (τ , ξ) ptr
 type (τ , ξ) obj

• The parameters are as follow
– Parameter τ represents the reference type.
– Parameter ξ represents const-ness using

type ro and rw

Library functions convert
pointers and objects.

• Converting between pointers and
objects using |&| and |*|.
 val |*| : (τ , ξ) ptr -> (τ , ξ) obj
 val |&| : (τ , ξ) obj -> (τ , ξ) ptr

• Following C semantics, read/write
types may be promoted to read only
(const) types.
 val ro : (τ , ξ) obj -> (τ , ro) obj

Get and set functions provide
a way to assign to objects.

• Get and set only defined for primitive C
types.

• Note that the types forbid setting a read
only object.

 type sint (* signed int *)

 val get_sint: (sint, ξ) obj -> sint
 val set_sint: (sint, rw) obj * sint ->
 unit

Manipulating C-arrays uses
pointers and objects.

• The NLFFI supports bounds checked
array access.
 val sub: ((τ , δ) arr, ξ) obj * int ->

(τ , ξ) obj
• An arrays can also be “decayed” to a

pointer.
val decay: ((τ , δ) arr, ξ) obj ->

(τ , ξ) ptr

Implementing sub requires
pointer arithmetic

• Pointer arithmetic requires knowledge of the
size of objects.

• Directly passing this size to a ptr_add
function is unsafe.

• Instead we use “light-weight” type constraints
to ensure that a suitable size is passed.
val ptr_add: τ typ ->

 (τ , ξ) ptr * int -> (τ , ξ) ptr

Type constraints ensure safer
pointer arithmetic.

structure T :> sig

 type τ typ
 val sint: sint typ

 ...

 val ptr: τ typ->(τ,rw) ptr typ
 val arr: τ typ * (δ, ζ) Dim.dim
end =

struct
 val sint = 4

 ...

 fun ptr _ = 4

 fun arr (t,d) = t * Dim.toInt(d)

end

NLFFI also supports a “heavy-
weight” object representation.

• Heavy-weight objects are represented
as an address × type pair.

• A sizeof function traverses the type
value to find the size of the object.

• This could theoretically be optimized
away (but not with current compilers).

• Using heavy-weight objects adds
considerable overhead to computations.

Sometimes C code expects
unsafe pointer casts.

• Casting to void * is easy to type:
val ptr_inject : (τ , ξ) ptr -> voidptr

• Using the typ type we can cast back:
val ptr_cast : (τ , ξ) ptr T.typ ->
 voidptr -> (τ , ξ) ptr

• This is unsafe, but we lost safety when
we linked with C.

Structures are represented
using the module system.

• The encoding is generally straight
forward.

• Multiple identical structure declarations
refer to the same type.
– This is accomplished using tags.
– It’s messy and not on the agenda.

Structs are represented with
an abstract type.

• Accessor functions provide access to
individual fields.

• Field objects are returned with
appropriate constness.

• (next slide)

Structs are represented with
an abstract type. (II)

struct node{ const int i; struct node *next; };

sig

 type tag = s_node

 val size : s_node su S.size

 val typ : s_node su T.typ

 ...

 val f_i : (s_node su, ξ) obj -> (sint, ro) obj
 val f_next : (s_node su, ξ) obj ->
 ((s_node su, rw) ptr, ξ) obj
end

The NLFFI supports first
class function pointers.

• Function pointers are first class C values and
are encoded as type φ fptr.

• Function calls are made with
 val call: (α -> β) fptr * α -> β

• The code generator wraps all statically
available functions.

• Programmers only need to use call when C
code returns function pointers.

References

• NLFFI:
http://ttic.uchicago.edu/~blume/papers/nlffi-entcs.pdf

SML/NJ 110.50 distribution

• OCaml FFI:
http://caml.inria.fr/ocaml/htmlman/manual032.html

• MLton FFI:
http://mlton.org/doc/user-guide/Foreign_function_interface.html

